BRITER: A BMP Responsive Osteoblast Reporter Cell Line
نویسندگان
چکیده
BACKGROUND BMP signaling pathway is critical for vertebrate development and tissue homeostasis. High-throughput molecular genetic screening may reveal novel players regulating BMP signaling response while chemical genetic screening of BMP signaling modifiers may have clinical significance. It is therefore important to generate a cell-based tool to execute such screens. METHODOLOGY/PRINCIPAL FINDINGS We have established a BMP responsive reporter cell line by stably integrating a BMP responsive dual luciferase reporter construct in the immortalized calvarial osteoblast cells isolated from tamoxifen inducible Bmp2; Bmp4 double conditional knockout mouse strain. This cell line, named BRITER (BMP Responsive Immortalized Reporter cell line), responds robustly, promptly and specifically to exogenously added BMP2 protein. The sensitivity to added BMP may be further increased by depleting the endogenous BMP2 and BMP4 proteins. CONCLUSION As the dynamic range of the assay (for BMP responsiveness) is very high for BRITER and as it responds specifically and promptly to exogenously added BMP2 protein, BRITER may be used effectively for chemical or molecular genetic screening for BMP signaling modifiers. Identification of novel molecular players capable of influencing BMP signaling pathway may have clinical significance.
منابع مشابه
Sulfated polysaccharides enhance the biological activities of bone morphogenetic proteins.
Bone morphogenetic proteins (BMPs), which have been shown to be heparin-binding proteins, induce osteoblast differentiation in mesenchymal cells. In the present study, we examined the effects of heparin on the BMP activities in C2C12 myoblasts. Heparin dose dependently enhanced the osteoblast differentiation induced by not only homodimers of BMP-2 or BMP-4 but also heterodimers of BMP-2/6 or BM...
متن کامل3911-3919-MicroRNA-100 inhibits BMP-induced osteoblast differentiation by targeting Smad1
– OBJECTIVE: MicroRNAs (miRNAs) act as key regulators of diverse cellular activities by regulating the expression of proteincoding genes. Osteoblast differentiation, a fundamental step in skeletal development, involves the activation of several signaling pathways, including transforming growth factor β (TGF-β), bone morphogenetic protein (BMP), and Wnt signaling pathways. MATERIALS AND METHODS:...
متن کاملIdentification of Small Molecule Activators of BMP Signaling
Bone Morphogenetic Proteins (BMPs) are morphogens that play a major role in regulating development and homeostasis. Although BMPs are used for the treatment of bone and kidney disorders, their clinical use is limited due to the supra-physiological doses required for therapeutic efficacy causing severe side effects. Because recombinant BMPs are expensive to produce, small molecule activators of ...
متن کاملDevelopment and optimization of a cell-based assay for the selection of synthetic compounds that potentiate bone morphogenetic protein-2 activity.
The requirement of large amounts of the recombinant human bone morphogenetic protein-2 (BMP-2) produces a huge translational barrier for its routine clinical use due to high cost. This leads to an urgent need to develop alternative methods to lower costs and/or increase efficacies for using BMP-2. In this study, we describe the development and optimization of a cell-based assay that is sensitiv...
متن کاملCharacterization of a bone morphogenetic protein-responsive Smad-binding element.
Bone morphogenetic proteins (BMPs) are pleiotropic growth and differentiation factors belonging to the transforming growth factor-beta (TGF-beta) superfamily. Signals of the TGF-beta-like ligands are propagated to the nucleus through specific interaction of transmembrane serine/threonine kinase receptors and Smad proteins. GCCGnCGC has been suggested as a consensus binding sequence for Drosophi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012